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Abstract

In this paper, nonlinear aeroelastic behavior of a two-dimensional symmetric rotor blade in the dynamic stall regime

is investigated. Two different oscillation models have been considered here: pitching oscillation and flap–edgewise

oscillation. Stall aeroelastic instability in such systems can potentially lead to structural damage. Hence it is an

important design concern, especially for wind turbines and helicopter rotors, where such modes of oscillation are likely

to take place. Most previous analyses of such dynamical systems are not exhaustive. System parameters like structural

nonlinearity or initial conditions have not been studied which could play a significant role on the overall dynamics. In

the present paper, a parametric study on the aeroelastic instability and the nonlinear dynamical behavior of the system

has been performed. Emphasis is given on the effect of structural nonlinearity and initial conditions. The aerodynamic

loads in the dynamic stall regime have been computed using the Onera model. The qualitative influence of the system

parameters is different in the two systems studied. The effect of structural nonlinearity on the bifurcation pattern of the

system response is significant in the case of pitching oscillation. The initial condition plays an important role on the

aeroelastic stability as well as on the bifurcation pattern in both the systems. In the forced response study, interesting

dynamical behavior, like period-3 response, has been observed in the pitching oscillation case. On the other hand, for

the flap–edgewise oscillation case, super-harmonic and quasi-harmonic response have been found.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

There are many instances where stall-induced oscillation leads to structural failure. Instances of longitudinal crack

formation in modern wind turbines is reported by Chaviaropoulos (1999) which resulted from severe edgewise

vibration. This has occurred during the dynamic stall process in modern stall-regulated turbines. In general, an airfoil

oscillates along the pitch degree-of-freedom during stall flutter. The flow-field during the dynamic stall process is largely

separated and viscous effects are important. The physical process involves growth and evolution of leading edge vortex

structures and their subsequent shedding from the body into the near wake. This largely controls the aerodynamic loads

on the airfoil. The flow field involves flow transition and large turbulent regions as well. All these effects make the
e front matter r 2008 Elsevier Ltd. All rights reserved.
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aerodynamic load prediction during a stall flutter problem much more involved than its traditional bending-torsion

counterpart. In the present study, we investigate a stall flutter problem along the pitch-wise and in the flap–edgewise

directions separately. A parametric study has been performed in order to understand the influence of system parameters

on the nonlinear dynamics and aeroelastic stability. This study is relevant toward the aeroelastic design of systems

where large angles of attack are likely to be encountered, such as in wind turbines.

The main objective of any computational aeroelastic analysis is to define the instability boundary and identifying the

system parameters affecting it. Nonlinearity could play an important role, for it could influence the aeroelastic stability

and could lead to bifurcations and chaos in the response. Dunn and Dugundji (1992) have presented an analysis and

experimental validation of aeroelastic instabilities at the nonlinear dynamic stall regime for a cantilever plate-like wing

structure. Tang and Dowell (1993a, b) have studied flutter and forced response of a helicopter rotor in the bending-

torsion mode, using a nonlinear aerodynamic model and considering geometric and free-play structural nonlinearities.

They have also performed experimental studies and obtained a good match with the analytical results. The dynamic stall

model used in the analysis is based on a semi-empirical technique called the Onera dynamic stall model. Lee et al. (1999)

have presented a review of nonlinear aeroelastic studies focusing on the pitch–plunge oscillation of an airfoil. They have

discussed problems with both structural and aerodynamic nonlinearities. Structural nonlinearities, in general, have been

represented by the classical forms of cubic, free-play and hysteresis. Price and Fragiskatos (2000) have presented a

nonlinear stall flutter analysis of a symmetric airfoil, using a nonlinear dynamic stall model by Beddoes–Leishman.

However, they have not considered the effect of structural nonlinearity. Chaviaropoulos (1999) and Chaviaropoulos

et al. (2003) have presented a study on stall-induced flap and edgewise oscillation in a stall-regulated rotor. Nonlinear

aerodynamic loads in the dynamic stall regime have been calculated by a quasi-steady Onera model as well as

Navier–Stokes solvers (Chaviaropoulos et al., 2003). Effects of structural nonlinearity have not been studied.

The present study considers stall flutter of an airfoil in two different structural models: a single-degree-of-freedom

pitching oscillation and a two-degree-of-freedom flap–edgewise oscillation in the dynamic stall regime. The first model

is the fundamental stall flutter model representing predominantly torsional oscillation. The second problem is

reportedly encountered in stall-regulated rotors, where pitch-wise oscillation is restricted (Chaviaropoulos, 1999). Most

earlier works with similar models have considered the effect of aerodynamic nonlinearity alone. The present work

investigates the effect of structural nonlinearity as well. Moreover, previous analysis do not report the effect of initial

conditions which has been addressed now. The influence of other system parameters has also been included which helps

in a systematic understanding of the stall flutter phenomenon in the above aeroelastic models. The aerodynamic loads

have been calculated by the semi-empirical Onera dynamic stall model; this model compares well with the experimental

results and is computationally much more efficient than a Navier–Stokes solver.

Compared to Navier–Stokes solvers, semi-empirical dynamic stall models are much faster. Among them, the Onera

model (Tran and Petot, 1981) and the Beddoes–Leishman model (Leishman and Beddoes, 1989) are quite commonly

used (Petersen et al., 1998). The Beddoes–Leishman model describes the unsteady loads by an indicial method below the

stall boundary, and above stall uses experimental data and a heuristic approach based on oscillating and ramping airfoil

analysis (Leishman and Beddoes, 1989; Beedy et al., 2003). The Onera model was developed in the Office National

d’Etudes et de Recherches Aérospatiales (ONERA) to compute the unsteady aerodynamic loads in the dynamic stall

regime for a pitching airfoil (Tran and Petot, 1981) and was later extended for both pitch and plunge motions (Peters,

1985). The model is based on a semi-empirical approach. The aerodynamic loads are given in terms of differential

equations, whose coefficients are determined empirically from experimental data by parametric fitting. The present

study uses the Onera model; the parameters are obtained from previous literature (Dunn and Dugundji, 1992), in the

Reynolds number and frequency range of our interest.

In the next section, a discussion on the Onera dynamic stall model is given. In Section 3, the equations of motion are

derived for the two aeroelastic systems considered in this paper. In Section 4, a discussion of results is presented. And

finally, in Section 5, a summary of the main observations from this work is given along with the conclusions.
2. Onera dynamic stall model

The physical process of dynamic stall refers to a complex dynamical phenomenon involving the development of

leading and trailing edge vortex structures, their separation and shedding into the wake and mutual interactions. Vortex

growth increases the aerodynamic loads beyond their stall boundary and shedding causes the decline. The loads are

dependent on the frequency or the rate of airfoil movement. The Onera model is divided into two equations: for the

inviscid part, and for the viscous part which becomes important above the stall angle of attack.

For details of the Onera model, Dunn and Dugundji (1992) and Tran and Petot (1981) can be referred to. Dunn

and Dugundji (1992) compared Onera results with experiments for a NACA 0012 airfoil oscillating sinusoidally.
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The comparisons were favorable; the overall shape of the aerodynamic load hysteresis curves was captured well.

However, the high frequency components were not suitably captured and it was argued by Dunn and Dugundji (1992)

that they do not play any significant role on the overall aeroelastic behavior of the system.

In the Onera model, the aerodynamic loads are given in terms of differential equations, for the inviscid and the

viscous parts separately. The coefficients of the inviscid part, are obtained from steady state experimental results and

are dependent on the airfoil profile. The viscous part uses parameters from unsteady experiments; the coefficient values,

therefore, are dependent on dynamic parameters such as frequency.

The aerodynamic loads are given in terms of the following equations:

Cz ¼ sza0 þ kvzy
00
þ Cz1 þ Cz2, (1)

C0z1 þ lzCz1 ¼ lzðaozaþ szy
0
Þ þ azðaoza0 þ szy

00
Þ, (2)

C00z2 þ 2dwC0z2 þ w2ð1þ d2
ÞCz2 ¼ �w2ð1þ d2

ÞðDCzjaþ eDC0zjaÞ. (3)

Here, y is the pitching angle and a ¼ y� _h is the total angle of attack, where h refers to the flapping displacement. Cz is

the general term for any one of the aerodynamic load coefficients CL, CD, CM . The term Cz1 is the inviscid circulatory

part of the load and Cz2 is the viscous part. sz, kvz, lz, az, aoz, sz, d, w and e are the coefficients associated with the

appropriate force coefficients, determined empirically by a parameter identification technique. The coefficients used in

this study are taken from Dunn and Dugundji (1992) for a NACA 0012 airfoil.

The differential equation for each part has been modeled in such a way that the mathematical model resembles the

complex physical process as closely as possible. The first-order inviscid equation, Eq. (2), uses a single lag term

operating on the linear part of an airfoil’s static force. It models the increase of the aerodynamic loads beyond the static

stall angle. The viscous part, Eq. (3), takes care of the decrease of the loads during the dynamic stall hysteresis loop.

DCz in the viscous equation refers to the difference in the aerodynamic loads between the inviscid and the

actual(viscous) value at any a greater than the static stall angle. Below the static stall angle, DCz is zero. The differential

equations of the Onera model are combined with the governing equations of the structural system to arrive at the

equations of motion of the aeroelastic system. The system equations of motion are derived in the following section.
3. Equations of motion

To derive the equation of motion of a two-dimensional blade section, we consider a strip of unit span of a symmetric

airfoil. A NACA 0012 profile has been selected. A schematic plot of the structure and its coordinate system is given in

Fig. 1. Two oscillation cases have been considered: one is an airfoil oscillating in the pitch degree-of-freedom, the

second is an airfoil oscillating in the directions of its flap and edge. The first case represents the classical stall flutter case

of an airfoil which is predominantly a single-degree-of-freedom problem where the torsional motion of the blade
UV

z (flap)

Ωr

pitch

α y (lead-lag)

Fig. 1. Schematic plot of the airfoil coordinate system and oscillation degrees-of-freedom.
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prevails. The second case is obtained in stall-regulated rotors showing sustained oscillation in the flap and edgewise

directions.

3.1. Pitching oscillation

The equation of motion for the single-degree-of-freedom pitching oscillation is given as follows (Fung, 1955):

Ia €aþ Iao2
aaþ Knl ¼MðtÞ þQðtÞ, (4)

where Ia is the wing mass moment of inertia, a is the effective angle of attack, oa is the natural frequency of the pitch

elastic mode and Knl is a nonlinear stiffness term accounting for any structural nonlinearity present in the system. MðtÞ

is the time-dependent aerodynamic moment and QðtÞ is any applied external moment. A nondimensional form of

the governing equation is often helpful in aeroelastic analysis to investigate the effect of system parameters.

A nondimensional form of Eq. (4) is

a00 þ a=ðU2Þ þ K̄nl ¼ 2Cm=ðpmr2aÞ þ F0 sinðk1tÞ, (5)

where the prime denotes a derivative with respect to nondimensional time t ¼ tV̄=b, V̄ is the relative wind velocity and

b is the semi-chord of the profile. The aerodynamic moment coefficient Cm is calculated using the Onera dynamic stall

model discussed in the previous section. U is the nondimensional airspeed defined as U ¼ V̄=boa, m and ra are

nondimensional structural parameters, m ¼ m=ðprb2
Þ is the mass ratio and ra ¼ Ia=ðmb2

Þ is the radius of gyration,

where m is the mass per unit span. F0 and K̄nl are nondimensional forcing amplitude and structural nonlinear stiffness,

respectively; k1 is the reduced frequency of oscillation. In the present study, a concentrated structural nonlinearity is

incorporated in the form of a cubic stiffness K̄nl ¼ Knl1a3. This artifice has been used in the literature to model the

stiffening spring behavior of a blade being twisted (Lee et al., 1999). Also, this is often a standard way to consider some

control mechanisms that may be present in the structure (Alighanbari and Price, 1996; Tang and Dowell, 1993b).

3.2. Flap–edgewise oscillation

The equations of motion for the combined flap–edge flutter case for a rotating blade have been derived by

Chaviaropoulos (1999). These equations are

1 0

0 1

� � €z
€b

( )
þ O

0 2b0
�2b0 0

" #
_z
_b

( )
þ

o2
y 0

0 o2
z

" #
þ

0 0

0 O2

� � !
z

b

( )
¼

1

2

r
m

V̄
2 c

r

Cy

Cz

( )
, (6)

where z and b are the small angular movements of the blade in the edge and flapwise directions, respectively, b0 is the
pre-cone angle of the blade and O is the rotational velocity. An extra stiffness term comes in the flap direction due to

rotation of the blade. r is the constant density of the fluid, m is the blade mass per unit length of the blade and Cy;Cz

are the aerodynamic load coefficients in the edge and flapwise directions, respectively. Cy;Cz are obtained from the lift

and drag coefficients of the section by using a simple rotational transformation. Using a similar nondimensionalization

as in Eq. (5), we obtain

1 0

0 1

� �
ȳ00

z̄00

� �
þ k2

ō2
y 0

0 1þ ō2
z

" #
ȳ

z̄

� �
¼

1

2pm

CD cos a� CL sin a

CD sin aþ CL cos a

( )
þ

0

F̄0 sinðk1tÞ

( )
. (7)

Here, ȳ ¼ zr=b and z̄ ¼ br=b are nondimensional edge and flapwise displacements, respectively; r is the radial distance

of the blade section from rotor root; b is the semi-chord of the airfoil. Nondimensional stiffness terms are defined as

ōy ¼ oy=O and ōz ¼ oz=O. The rotor angular velocity is given in terms of the nondimensional term k ¼ Ob=V̄ . The

pre-cone angle b0 of the rotor has been assumed to be zero.
4. Results and discussion

We assume a symmetric NACA 0012 section to study both the cases. The influence of the relevant parameters for

individual cases are discussed in the following subsections. The aerodynamic loads are computed by the Onera dynamic

stall model. The coefficients of the Onera model sz, kvz, lz, az, aoz, sz, d, w and e are given by Dunn and Dugundji (1992)

for two Re ranges: Re43:4� 105 and Reo3:4� 105. In this study, we assume Re4106 and choose the appropriate

parameters. The elastic axis is chosen at the quarter-chord point. For both the models, structural damping has been
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neglected. Though the effect of structural damping could be significant in any dynamical system, for the stall flutter case

previous work suggests that the influence aerodynamic damping is more important than that of structural damping

(Fragiskatos, 1999).

The differential equations of the Onera model are combined with the governing equations of the structural system.

The resulting system of equations is solved in the time domain using a fourth-order variable-step Runge–Kutta

integration scheme. At each time level the technique uses internal time step sizes smaller than the user-prescribed value

till convergence is obtained. The nondimensional time step size chosen here is 0.01, based on the frequency of

oscillation. The time step size conforms with the convergence criteria as well.

4.1. Single-degree-of-freedom pitching oscillation problem

Fragiskatos (1999) reports a parametric study on a pitching stall flutter model. However, the effect of structural

nonlinearity, which could play a significant role on the stability and dynamical behavior of the system has not been

considered. The influence of initial conditions on the bifurcation routes has not been reported either. These issues are

addressed in the present work. The equation of motion for this case is given in Eq. (5) in a nondimensional form. We

consider both self-excited and forced analysis of the system. System parameters are varied in the range of practical

interest (Fragiskatos, 1999).
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Fig. 2. Damped oscillation, am ¼ 0:0, with different initial conditions: (a) ICS 1�; (b) ICS 10�; (c) ICS 10�; (d) ICS 20�.



ARTICLE IN PRESS
S. Sarkar, H. Bijl / Journal of Fluids and Structures 24 (2008) 757–777762
4.1.1. Self-excited system: effect of mean angle of attack, geometric nonlinearity

To study the self-excited system, the external moment at the right-hand side of Eq. (5) is assumed to be zero. The

structural parameters are assumed to be m ¼ 100, ra ¼ 0:5 (Price and Fragiskatos, 2000). These values are kept constant

throughout the simulations. In the unforced system, the nondimensional velocity U is the most important bifurcation

parameter. Other relevant parameters are the mean angle of attack, structural nonlinearity and initial conditions. The

single-degree-of-freedom pitching system shows a damped oscillation till the stall angle of the airfoil is reached. A

nonzero mean angle or the structural equilibrium point (Fragiskatos, 1999), about which the initial perturbation is

given, helps increase the airfoil angle of attack as U increases. However, with a zero mean angle, even a large U does not

show the same. Some typical cases are presented in Fig. 2 with different initial perturbations. All cases are with zero

mean angle of attack. The results for U ¼ 10 are shown in Fig. 2(a),(b), and for U ¼ 100 in Fig. 2(c),(d). Initial

perturbations are evident in the plots as the starting point. In all the cases, the response always comes back to a damped

oscillation.

A nonzero mean angle of attack changes the system behavior significantly. A static moment is applied in order to

maintain a structural equilibrium position of nonzero mean angle of attack. The nondimensional velocity U is
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Fig. 3. Bifurcation plot for am ¼ 4�, ainit ¼ 10�.

5 10 15 20 25 30
0

2

4

6

8

10

12

14

U

α°
 a

t 
α′

 =
 0

min response

max response

Fig. 4. Bifurcation plot for am ¼ 2�, ainit ¼ 10�.



ARTICLE IN PRESS
S. Sarkar, H. Bijl / Journal of Fluids and Structures 24 (2008) 757–777 763
considered as a bifurcation parameter. We consider a static equilibrium position around 4�. The resulting response is

plotted in Fig. 3 for different U. The ordinate gives the pitch response at its maximum and minimum points, that is,

where the derivative of the response (a0) is zero. The initial condition for a is kept constant at 10�. As the figure shows,

the response changes qualitatively after U ¼ 16; it becomes oscillatory from a damped response. Therefore, U ¼ 16 is

the critical point or, the onset of stall flutter where limit cycle oscillation (LCO) starts.

Next, we consider a mean angle of 2�. The critical U at which LCO is obtained is 22 as shown in Fig. 4. Comparing

this with the case of 4� mean angle of attack, we surmise that a smaller initial am takes a higher U to reach the LCO. It is

also apparent from the above study that, as U increases, the mean angle of incidence am about which the oscillation

occurs or dies down, increases. The LCO occurs only when am reaches past the stall angle, at a critical value of U (Ucr).

A critical speed versus mean angle of attack study has been done in the mean angle of attack range of 1210�. The result

is plotted in Fig. 5.

Next, we add structural nonlinearity to the system. A cubic stiffness is considered, as previously stated in Section 3.

A cubic nonlinear term of 0:05a3 is considered to that effect. In this case, the LCO occurs at U ¼ 28, much beyond the

previous case. The response is plotted in Fig. 6. It seems, adding cubic structural nonlinearity makes the Ucr value much
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Fig. 5. Stall flutter boundary, Ucr versus am.
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higher. However, this effect could be due to the extra stiffness added to the system and not necessarily due to the

nonlinearity.

4.1.2. Self-excited system: influence of initial conditions

By changing the initial condition of the self-excited system, different periodic attractors have been observed. When

the initial perturbation is increased to 20�, the response pattern changes qualitatively. We observe a series of period-

doubling flip bifurcations leading to an aperiodic response. We present the results for a mean angle of 0:5�. A single

periodic response goes to period-2 at around U ¼ 6 which leads to an aperiodic response at U ¼ 9:7, after following a

series of period-doubling bifurcations. The single periodic response is shown in Fig. 7 for U ¼ 5 with the time history,

phase plot and the frequency content. The period-2 response is presented in Fig. 8 for U ¼ 7. After another flip

bifurcation, a period-4 response occurs and it is shown in Fig. 9 for U ¼ 9:4 in the same manner. Finally at U ¼ 9:7, an
aperiodic response is obtained. The time history is shown in Fig. 10(a). The phase plot in Fig. 10(b) does not look like a

strange attractor; instead it resembles a quasiperiodic pattern. The frequency content shown in Fig. 10(c) reveals two

peaks: 0.11 and 0.17 which are incommensurate. We have also taken Poincaré sections of the response and the Poincaré

plot reveals a closed loop (not shown here), also indicating a quasiperiodic response. It should be noted that the natural

frequency of the system (without the aerodynamic moment) is in the form of 1=U . However, U itself acts as a

bifurcation parameter to bring in this qualitative change. The frequencies of the response are seen in the Figs. 7–9(c).

When a mean angle of attack around 5:5� is chosen, again a similar quasiperiodic route is observed. However, the

quasiperiodic response is obtained at a much lower U value and with a higher angular perturbation of 25�. For this case,

a LCO appears around U ¼ 3; period-doubling is observed at U ¼ 4, and at U ¼ 5:1 a quasiperiodic response similar
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to the previous case is obtained. Though we obtain identical paths to a quasiperiodic orbit for both cases, they occur at

different U values: for a higher mean angle, LCO and quasiperiodic response occur at lower U. Also, the initial

perturbation of a required to obtain a LCO and subsequent quasiperiodic attractor is higher for the higher mean angle

of attack case. The bifurcation pattern with routes to quasi-periodicity is presented in Fig. 11 for am ¼ 0:5� case.
Cubic nonlinearity when added to the system modifies the bifurcation pattern, as shown in Fig. 12. A cubic spring

stiffness of 0.01 slightly defers the quasiperiodic response to around U ¼ 10:1 from 9.7 of the earlier case. However, a

higher cubic stiffness of 0.1 significantly modifies the response, as shown in Fig. 13. In this case, a period-2 response,

appears at U around 9 and no further period-doubling is obtained for U up to 30.

4.1.3. Forced oscillation

In this case, an external forcing term at the right-hand side of Eq. (5) is introduced in the form of harmonic forcing

couple: F0 sinðk1tÞ. We first assume F0 ¼ 0:001, U ¼ 10, k1 ¼ 0:2 with a mean angle of attack of 5�. The solution is

periodic. As F0 is increased till 0.002 at an interval of 0.0005, we consistently obtain single periodic response throughout

the range. This is shown in Fig. 14. It can also be observed that the amplitude of the period-1 response increases as the

forcing amplitude increases. When U is changed to 15 and F0 to 0.002, the response changes to an aperiodic one.

The attractor in the phase plane is shown in Fig. 15, which resembles a chaotic attractor. Poincaré sections of the

response are taken and the Poincaré points are plotted in Fig. 16. In this case, the entire phase plane looks populated by

the Poincaré points, a signature of chaotic response. The frequency content plot in Fig. 17 shows many peaks which is

observed in a chaotic pattern. The Lyapunov exponents are not computed, but a check with slightly different initial

conditions has been done. We have considered two time histories with initial conditions different from each other by
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10�3 radians and after a nondimensional time window of 1200, the time histories look significantly drifted from each

other. This confirms the response to be chaotic. The two time histories are presented in Fig. 18. The separation of time

histories from each other grows with time giving a rough approximation of a positive Lyapunov exponent (Fragiskatos,

1999; Wolf et al., 1985), which is a signature of chaos. Next, we follow the chaotic path backward by decreasing F0 and

the bifurcation plot is presented in Fig. 19. There are chaotic bands in between and the system uses period-doubling

routes to chaos.

Next, the oscillation frequency k1 is varied between 0.2 and 0.4 with an interval of 0.001. The bifurcation diagram

presented in Fig. 20, shows an interesting behavior: a period-3 response. The response starts with chaos and remains so

at the lower values of k1. As k1 increases to 0.22, a period-2 response is visible which becomes chaotic through a period-

doubling cascade at k1 ¼ 0:286. At k1 ¼ 0:295, the chaotic response gives way to a period-3 response. The response

remains so for the rest of the k1 range.

4.2. Two-degree-of-freedom flap–edgewise oscillation

The combined flap and edgewise oscillation case has not received much attention in the nonlinear aeroelastic

community. However, as mentioned earlier, such oscillations could potentially lead to structural damage.

Chaviaropoulos (1999) and Chaviaropoulos et al. (2003) have presented a linear stability analysis along with the

time domain results for a self-excited system. However, only a few cases with different nondimensional rotor speeds

were studied. A quasi-steady Onera model was used for the linear stability analysis, and time domain results were

simulated using grid based viscous flow solvers. Effects of external forcing and structural nonlinearity were not
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investigated. The present study also considers parameters like structural stiffness for their influence on the system

dynamical behavior. Effects of initial conditions have also been investigated which is done here. Geometric structural

nonlinearity has been included in the model and its effect on the response studied. Finally, a forced response analysis

is presented. Nondimensional amplitude and frequency of forcing have been varied as bifurcation parameters.

The system shows super-harmonic and quasi-harmonic behavior at different forcing frequencies. No chaotic route has

been found.

4.2.1. Verification with previous work

The equation of motion is given in the nondimensional form in Eq. (7); we assume, 1=pm ¼ 0:02 and pitch angle

y ¼ 18� which is above the stall angle of attack of the airfoil. These values are kept constant throughout the simulations.

The structural stiffness values are, ōy ¼ 7, ōz ¼ 4. The Reynolds number is assumed to be Re4106, with

incompressible flow assumptions. External forcing is zero. For the same system, Chaviaropoulos et al. (2003) presented
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time domain results obtained by using a Navier–Stokes solver. The time domain solutions were accompanied by a linear

stability analysis performed using quasi-steady Onera dynamic stall model. We start with comparing our time domain

solutions with those presented by Chaviaropoulos et al. (2003). Two test cases with k ¼ 0:05 and 0.1 are chosen, with

zero initial conditions. For k ¼ 0:1, a stable damped response is predicted by the Onera model, as was also reported by

Chaviaropoulos et al. (2003). The time history of the response is given in Fig. 21 for both edgewise and flapwise

oscillations. Both are aeroelastically stable. The flapwise oscillation matches almost perfectly with that reported by

Chaviaropoulos et al. (2003). However, the edgewise oscillation shows a slightly higher amplitude than our result. Note

that the results are compared for an initial time frame of (0–100), and a difference in the amplitude refers to a difference

in the level of damping. We attribute this to numerical damping, which is likely to vary from one numerical model to

another. The order of the edgewise response being very small (in the order of 10�3), even a small amount of numerical

damping could effectively change the order of the solution. A second test case with k ¼ 0:05 and zero initial conditions,

shows an unstable response, shown in Fig. 22. For this case, an unstable response was also reported by Chaviaropoulos

et al. (2003) as well. However, they did not present any time history for this case.
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4.2.2. Self-excited system: effect of initial conditions and structural stiffness

As seen in the previous section, the system response is unstable at k ¼ 0:05, further investigation shows that at higher

values, only stable period-1 solutions are obtained. However, we observe that adding a nonzero initial condition could

change this. This is shown in Fig. 23 for k ¼ 0:06. With an initial perturbation of 0.5 in the flapping direction the

response becomes unstable. Next we study the influence of structural stiffness in the flap and edgewise directions and

their ratio as well. It is observed that rather than the ratio of ōz=ōy, individual values are more important. If we double

both the stiffness, both flap and edgewise response decrease and no nonlinear effects are observed. This is presented in

Fig. 24. Increasing the edgewise stiffness further while keeping the other fixed, the response in the edgewise direction

alone is reduced, as shown in Fig. 25. We also consider a reduced stiffness in order to investigate the effect of higher

flexibilities. For that, ōz is decreased gradually from the earlier value of 4. As a result, the earlier damped response

undergoes a qualitative change and becomes periodic and then higher periodic. We present a typical case in Fig. 26,

when ōz ¼ 2. The response shows a period-3 attractor; the phase plot has three loops. Thus, nonlinear behavior is

introduced into the system with increased flexibility.
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100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

τ

F
la

p
w

is
e
 o

s
c
ill

a
ti
o
n

100 200 300 400 500 600

-6

-4

-2

0

2

4

τ

F
la

p
w

is
e
 o

s
c
ill

a
ti
o
n
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Finally a cubic nonlinearity in the flapwise direction is added. The flapwise direction is chosen because, oscillation

amplitude in this direction is much larger than in the other; so it is expected that the effect of geometric nonlinearity will

be more pronounced. However, no nonlinear dynamical behavior in the overall response has been observed. The effect

of adding the cubic stiffness term has been similar to adding extra stiffness to the system, the resulting amplitude being

smaller.

4.2.3. Forced oscillation

In the results presented above, the self-excited system has shown instabilities at low k. So far, no significant nonlinear

dynamical behavior has been observed. To investigate the system dynamics further, we now add external forcing to it.

A sinusoidal forcing term as shown in Eq. (7) is added to the system. In the previous system, we saw chaotic response

appearing in the otherwise damped response after adding forcing. We once again vary the forcing amplitude ðF̄0Þ and

the nondimensional frequency of the forcing ðk1Þ. Other parameters are kept at ōy ¼ 7, ōz ¼ 4, k ¼ 0:1. Fig. 27 shows

the bifurcation diagram of the response for forcing amplitude ðF̄0Þ 0.0–0.002. Unlike the previous case, the maximum

response at each cycle of oscillation is presented here. We observe only period-1 oscillations in this range. However, the
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amplitude of response increases with the amplitude of forcing. On the other hand, variation of nondimensional

frequency k1 shows interesting dynamical behavior. The system shows the presence of two frequencies: one is the

forcing frequency of oscillation and the other is the frequency of the unforced system. The nondimensional frequency

of oscillation of the unforced system is found to be 0.7. At lower k1 values, the influence of the unforced natural

frequency is stronger. When k1 is 0.05, fourteenth-order harmonics are observed. Similarly, seventh-order harmonics

are present for k1 ¼ 0:1. For k1 ¼ 0:15, the frequencies are incommensurate so quasiperiodic response is observed.

However, as k1 increases further, the presence of higher-harmonics and quasi-harmonics is not apparent from the time

histories and phase plots of the response; though an FFT analysis continues to show a rather weak presence of

frequency 0.7.

The time history and frequency content plot for k1 ¼ 0:05 is shown in Fig. 28. The response shows two main

frequencies, 0.05 and 0.7, that is, higher harmonic of fourteenth-order is present. Similarly, for k1 ¼ 0:1, the frequency
content confirms (Fig. 29(b)), the presence of seventh-order harmonics in the response. The next case with k1 ¼ 0:15, is
presented in Fig. 30. The frequencies present are 0.15 and 0.7 which are incommensurate, hence indicating

a quasiperiodic behavior. As the reduced forcing frequency k1 is increased further, the response gradually shows

stronger influence of k1 alone. The time history for k1 ¼ 0:2 is shown in Fig. 31(a), where the presence of a higher

harmonic is not visible. The frequency content of this response, shown in Fig. 31(b), shows a strong peak around

0.2. Though an extremely weak presence of frequency 0.7 is also observed, this is not reflected on the time history

of the response.
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history, (b) edgewise oscillation frequency content.

S. Sarkar, H. Bijl / Journal of Fluids and Structures 24 (2008) 757–777 775
5. Conclusions

A nonlinear aeroelastic analysis of a two-dimensional airfoil is presented here during stall-induced oscillations. The

focus has been to investigate the influence of various system parameters on the aeroelastic stability and nonlinear

dynamical response. Emphasis is given on parameters like structural nonlinearity and initial conditions. Two different

stall oscillation models are considered: pitching oscillation and flap–edgewise oscillation. Both self-excited as well as

forced oscillations are studied. An engineering stall model by Onera is used to calculate the aerodynamic loads in the

dynamic stall regime. This model is well established and is based on steady and unsteady experimental data. Coefficients

of the Onera model are taken from available data in the literature.

The analysis is performed with parametric variations and the resulting bifurcation behavior is noted. The first system

shows the presence of a strong nonlinear behavior even without structural nonlinearity and external forcing. For
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example, quasiperiodic attractors have been found in the self-excited system without structural nonlinearity. The

bifurcation behavior is influenced by many parameters: mean angle of attack, initial conditions and structural

nonlinearity. For the forced system, the bifurcation parameters are forcing frequency and amplitude. Forcing induces

chaotic response in the otherwise damped system. Forcing amplitude as a bifurcation parameter shows chaotic routes

through a series of period-doubling bifurcations. Forcing frequency shows the presence of period-3 attractors,

culminating into chaos.

For the flap–edgewise oscillation case, not much work has been done before. We have chosen some test cases from

previously published results and verified our results with those. We have varied system parameters like structural

stiffness, initial conditions and structural nonlinearity. Initial conditions influence the stability behavior significantly.

Structural stiffness in the flap and edgewise directions do not bring in significant qualitative changes in the response,

except at low values. For the forced system, there are some interesting patterns as the forcing frequency is varied. Super-

harmonic and quasiperiodic response are observed at lower values of the forcing frequency. However at higher values,

the response becomes predominantly period-1.
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